On the order and hyper-order of meromorphic solutions of higher order linear differential equations

dc.contributor.authorBelaidi, Benharrat
dc.contributor.authorAndasmas, Maamar
dc.date.accessioned2019-05-30T09:42:26Z
dc.date.available2019-05-30T09:42:26Z
dc.date.issued2013
dc.description.abstractIn this paper, we investigate the order of growth of solutions of the higher order linear differential equation f (k) + kX−1 j=0 ` hj e Pj (z) + dj ´ f (j) = 0, where Pj (z) (j = 0, 1, . . . , k−1) are nonconstant polynomials such that deg Pj = n ≥ 1 and hj (z), dj (z) (j = 0, 1, . . . , k − 1) with h0 6≡ 0 are meromorphic functions of finite order such that max{ρ(hj ), ρ(dj ) : j = 0, 1, . . . , k − 1} < n. We prove that every meromorphic solution f 6≡ 0 of the above equation is of infinite order. Then, we use the exponent of convergence of zeros or the exponent of convergence of poles of solutions to obtain an estimation of the hyper-order of solutions.en_US
dc.identifier.urihttp://e-biblio.univ-mosta.dz/handle/123456789/10459
dc.publisherHokkaido Mathematical Journalen_US
dc.subjectLinear differential equationsen_US
dc.subjectMeromorphic solutionsen_US
dc.subjectOrder of growthen_US
dc.subjectHyper-orderen_US
dc.titleOn the order and hyper-order of meromorphic solutions of higher order linear differential equationsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
euclid.hokmj.1384273387.pdf
Size:
269.47 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: