Growth of solutions to higher-order linear differential equations with entire coefficients

dc.contributor.authorBelaidi, Benharrat
dc.contributor.authorHabib, Habib
dc.date.accessioned2019-05-30T12:46:56Z
dc.date.available2019-05-30T12:46:56Z
dc.date.issued2014-01-01
dc.description.abstractIn this article, we discuss the order and hyper-order of the lineardifferential equationf(k)+k−1Xj=1(Bjebjz+Djedjz)f(j)+ (A1ea1z+A2ea2z)f= 0,whereAj(z),Bj(z),Dj(z) are entire functions (6≡0) anda1,a2,djare complexnumbers (6= 0), andbjare real numbers. Under certain conditions, we provethat every solutionf6≡0 of the above equation is of infinite order. Then,we obtain an estimate of the hyper-order. Finally, we give an estimate of theexponent of convergence for distinct zeros of the functionsf(j)−φ(j= 0,1,2),whereφis an entire function (6≡0) and of orderσ(φ)<1, while the solutionfof the differential equation is of infinite order. Our results extend the previousresults due to Chen, Peng and Chen and others.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttp://e-biblio.univ-mosta.dz/handle/123456789/10531
dc.publisherElectronic Journal of Differential Equationsen_US
dc.subjectLinear differential equationen_US
dc.subjectentire solutionen_US
dc.subjectorder of growthen_US
dc.subjecthyper-order of growthen_US
dc.subjectfixed point.en_US
dc.titleGrowth of solutions to higher-order linear differential equations with entire coefficientsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
b5466061518a6a3d4f0b018d9a2dc9e2d382.pdf
Size:
305.03 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: