Infinite order solutions of complex linear differential equations

dc.contributor.authorBelaidi, Benharrat
dc.date.accessioned2019-06-09T12:44:55Z
dc.date.available2019-06-09T12:44:55Z
dc.date.issued2007
dc.description.abstractIn this paper we investigate the growth of solutions of the differential equation f .k/C Ak􀀀1 .´/f .k􀀀1/C CA1 .´/f 0 CA0 .´/f D 0; where A0 .´/ ; : : : ; Ak􀀀1 .´/ are entire functions with 0 < .A0/ 1=2: We will show that if there exists a real constant < .A0/ and a set E .1;C1/ with log densE D 1; such that for all r 2 E ; we have minj´jDr jAj .´/ j exp.r / .j D 1;2; : : : ;k 􀀀1/ ; then every solution f 6 0 of the above differential equation is of infinite order with hyper-order 2 .f / .A0/. The paper extends previous results by the author and Hamani.en_US
dc.identifier.issn1787-2413
dc.identifier.urihttp://e-biblio.univ-mosta.dz/handle/123456789/10726
dc.publisherMiskolc Mathematical Notesen_US
dc.subjectlinear differential equationsen_US
dc.subjectgrowth of entire functionen_US
dc.subjecthyper-orderen_US
dc.titleInfinite order solutions of complex linear differential equationsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
98.pdf
Size:
764.7 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: