Nonlinearity effects on conductance statistics in one dimensional disordered systems.
| dc.contributor.author | Senouci, Khaled | |
| dc.date.accessioned | 2019-01-21T13:14:40Z | |
| dc.date.available | 2019-01-21T13:14:40Z | |
| dc.date.issued | 2014-11-01 | |
| dc.description.abstract | Résumé : We investigate numerically the effect of non-linear interaction on conductance statistics in one dimensional disordered systems with γ peak potentials. It is shown that the non-linearity can either localize or delocalize the electronic states depending on its sign. For an attractive nonlinear interaction, we found that the mean conductance decays as g≈L^(-γ). The exponent is found to be sensitive to the kind of the potential. It seems to be independent of the strength of the non-linearity in the case of disordered barrier potentials, while it varies with this strength for well and mixed potentials. The conductance probability distribution shows a deviation from its log-normal form (linear case) when the nonlinearity is increased and the fluctuations of conductance decrease indicating the delocalization of the eigenstates. | en_US |
| dc.identifier.issn | 0378-4371 | |
| dc.identifier.uri | http://e-biblio.univ-mosta.dz/handle/123456789/8783 | |
| dc.language.iso | en | en_US |
| dc.publisher | Physica A: Statistical Mechanics and its Applications | en_US |
| dc.relation.ispartofseries | ;Vol 413 | |
| dc.subject | Disordered systems, Localization–delocalization transition, Nonlinear interaction, Conductance fluctuations, Conductance distribution | en_US |
| dc.title | Nonlinearity effects on conductance statistics in one dimensional disordered systems. | en_US |
| dc.type | Article | en_US |