Some Results for a Four $ Point Boundary Value Problems for a coupled system Involving Caputo Derivatives
| dc.contributor.author | Dahmani, Zoubir | |
| dc.contributor.author | Houas, M | |
| dc.contributor.author | Benbachira, M | |
| dc.date.accessioned | 2019-01-21T08:33:13Z | |
| dc.date.available | 2019-01-21T08:33:13Z | |
| dc.date.issued | 2015 | |
| dc.description.abstract | In this paper, we prove the existence and uniqueness of solutions for a system for fractional differential equations with four point boundary conditions. The results are obtained using Banach contraction principle and Krasnoselkii’s fixed point theorem D α x ( t )+ f ( t , y ( t ) , D δ y ( t ) ) = 0, t ∈ J , D β y ( t )+ g ( t , x ( t ) , D σ x ( t ))= 0, t ∈ J , x ( 0 )= y ( 0 )= 0, x ( 1 ) − λ 1 x ( η )= 0, y ( 1 ) − λ 1 y ( η )= 0, x ′′ ( 0 )= y ′′ ( 0 )= 0, x ′′ ( 1 ) − λ 2 x ′′ ( ξ )= 0, y ′′ ( 1 ) − λ 2 y ′′ ( ξ )= 0, where 3 < α , β ≤ 4, α − 2 < σ ≤ α − 1, β − 2 < δ ≤ β − 1, 0 < ξ , η < 1, and D α , D β , D δ and D σ , are the Caputo fractional derivatives, J =[ 0, 1 ] , λ 1 , λ 2 are real constants with λ 1 η 6 = 1, λ 2 ξ 6 = 1 and f , g continuous functions on [ 0, 1 ] × R 2 . | en_US |
| dc.identifier.issn | 2319-3786 | |
| dc.identifier.uri | http://e-biblio.univ-mosta.dz/handle/123456789/8754 | |
| dc.publisher | Malaya journal of matematik | en_US |
| dc.subject | Caputo derivative; Boundary Value Problem; fixed point theorem. | en_US |
| dc.title | Some Results for a Four $ Point Boundary Value Problems for a coupled system Involving Caputo Derivatives | en_US |
| dc.type | Article | en_US |