Some Results for a Four $ Point Boundary Value Problems for a coupled system Involving Caputo Derivatives

dc.contributor.authorDahmani, Zoubir
dc.contributor.authorHouas, M
dc.contributor.authorBenbachira, M
dc.date.accessioned2019-01-21T08:33:13Z
dc.date.available2019-01-21T08:33:13Z
dc.date.issued2015
dc.description.abstractIn this paper, we prove the existence and uniqueness of solutions for a system for fractional differential equations with four point boundary conditions. The results are obtained using Banach contraction principle and Krasnoselkii’s fixed point theorem          D α x ( t )+ f ( t , y ( t ) , D δ y ( t ) ) = 0, t ∈ J , D β y ( t )+ g ( t , x ( t ) , D σ x ( t ))= 0, t ∈ J , x ( 0 )= y ( 0 )= 0, x ( 1 ) − λ 1 x ( η )= 0, y ( 1 ) − λ 1 y ( η )= 0, x ′′ ( 0 )= y ′′ ( 0 )= 0, x ′′ ( 1 ) − λ 2 x ′′ ( ξ )= 0, y ′′ ( 1 ) − λ 2 y ′′ ( ξ )= 0, where 3 < α , β ≤ 4, α − 2 < σ ≤ α − 1, β − 2 < δ ≤ β − 1, 0 < ξ , η < 1, and D α , D β , D δ and D σ , are the Caputo fractional derivatives, J =[ 0, 1 ] , λ 1 , λ 2 are real constants with λ 1 η 6 = 1, λ 2 ξ 6 = 1 and f , g continuous functions on [ 0, 1 ] × R 2 .en_US
dc.identifier.issn2319-3786
dc.identifier.urihttp://e-biblio.univ-mosta.dz/handle/123456789/8754
dc.publisherMalaya journal of matematiken_US
dc.subjectCaputo derivative; Boundary Value Problem; fixed point theorem.en_US
dc.titleSome Results for a Four $ Point Boundary Value Problems for a coupled system Involving Caputo Derivativesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MJM124.pdf
Size:
320.1 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: