Etude díun problËme ‡ conditions aux limites nonlocales gÈnÈralisÈes de type Bitsadze-Samarskii dans le cadre des espaces L p

dc.contributor.authorHAMDI, Brahim
dc.date.accessioned2021-07-12T09:49:31Z
dc.date.available2021-07-12T09:49:31Z
dc.date.issued2021-06-23
dc.description.abstractThis work is devoted to the study of General Bitsadze-Samarskii Problems of elliptic type in the framework of UMD Banach spaces. More precisely we consider the following abstract second order di§erential equation: u 00(x) + (L M)u 0 (x) LMu(x) = f(x) p.p. x 2]0; 1[; (1) with : for the Örst problem the following nonlocal generalized boundary conditions: u(0) = u0; u(1) Hu(x0) = u1;x0 ; (2) for the second problem the following nonlocal generalized boundary conditions: u(0) = u0; u(1) Hu0 (x0) = u1;x0 : (3) Here X is a Banach complexe space, f 2 L p (0; 1; X) where p 2]1;1[, u0; u1;x0 2 X. Moreover L; M et H are closed linear operators in X. We obtain some results about existence, uniqueness and regularity of the solution. We deÖne two types of solutions (strict and semi-strict solutions) and we give necessary and su¢ cient conditions on the data to obtain these results. The method used is based on Önding a formula to represent the solution in each case using the semi-groups and fractional powers of the operators. Then an analysis of this representation is made to Önd regularity results of the solution using the interpolation spaces and the Dore-Venni operators sums theory.en_US
dc.identifier.urihttp://e-biblio.univ-mosta.dz/handle/123456789/18273
dc.language.isofren_US
dc.publisherUniversité de Mostaganemen_US
dc.subjectNonlocal boundary conditions, analytic semigroups, bounded imaginary powers of operators, UMD spaces, interpolation spaces, Dore-Venni operators sums theen_US
dc.titleEtude díun problËme ‡ conditions aux limites nonlocales gÈnÈralisÈes de type Bitsadze-Samarskii dans le cadre des espaces L pen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TheseHamdiBrahim27.06.2021.pdf
Size:
688.66 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: